130 research outputs found

    Leader-following Consensus of Multi-agent Systems over Finite Fields

    Full text link
    The leader-following consensus problem of multi-agent systems over finite fields Fp{\mathbb F}_p is considered in this paper. Dynamics of each agent is governed by a linear equation over Fp{\mathbb F}_p, where a distributed control protocol is utilized by the followers.Sufficient and/or necessary conditions on system matrices and graph weights in Fp{\mathbb F}_p are provided for the followers to track the leader

    Passivity Degradation In Discrete Control Implementations: An Approximate Bisimulation Approach

    Full text link
    In this paper, we present some preliminary results for compositional analysis of heterogeneous systems containing both discrete state models and continuous systems using consistent notions of dissipativity and passivity. We study the following problem: given a physical plant model and a continuous feedback controller designed using traditional control techniques, how is the closed-loop passivity affected when the continuous controller is replaced by a discrete (i.e., symbolic) implementation within this framework? Specifically, we give quantitative results on performance degradation when the discrete control implementation is approximately bisimilar to the continuous controller, and based on them, we provide conditions that guarantee the boundedness property of the closed-loop system.Comment: This is an extended version of our IEEE CDC 2015 paper to appear in Japa

    Safe Control of Euler-Lagrange Systems with Limited Model Information

    Full text link
    This paper presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method.Comment: Accepted to IEEE CDC 2023 and this is the extended versio

    Safety Verification of Neural Feedback Systems Based on Constrained Zonotopes

    Full text link
    Artificial neural networks (ANNs) have been utilized in many feedback control systems and introduced new challenges regarding the safety of the system. This paper considers the problem of verifying whether the trajectories of a system with a feedforward neural network (FNN) controller can avoid unsafe regions, using a constrained zonotope-based reachability analysis approach. FNNs with the rectified linear unit activation function are considered in this work. A novel set-based method is proposed to compute both exact and over-approximated reachable sets for linear discrete-time systems with FNN controllers, and linear program-based sufficient conditions are presented to certify the safety of the neural feedback systems. Reachability analysis and safety verification for neural feedback systems with nonlinear models are also considered. The computational efficiency and accuracy of the proposed method are demonstrated by two numerical examples where a comparison with state-of-the-art methods is also provided.Comment: 8 pages, 4 figure

    Reachability Analysis and Safety Verification of Neural Feedback Systems via Hybrid Zonotopes

    Full text link
    Hybrid zonotopes generalize constrained zonotopes by introducing additional binary variables and possess some unique properties that make them convenient to represent nonconvex sets. This paper presents novel hybrid zonotope-based methods for the reachability analysis and safety verification of neural feedback systems. Algorithms are proposed to compute the input-output relationship of each layer of a feedforward neural network, as well as the exact reachable sets of neural feedback systems. In addition, a sufficient and necessary condition is formulated as a mixed-integer linear program to certify whether the trajectories of a neural feedback system can avoid unsafe regions. The proposed approach is shown to yield a formulation that provides the tightest convex relaxation for the reachable sets of the neural feedback system. Complexity reduction techniques for the reachable sets are developed to balance the computation efficiency and approximation accuracy. Two numerical examples demonstrate the superior performance of the proposed approach compared to other existing methods.Comment: 8 pages, 4 figure

    Immersion and Invariance-based Disturbance Observer and Its Application to Safe Control

    Full text link
    When the disturbance input matrix is nonlinear, existing disturbance observer design methods rely on the solvability of a partial differential equation or the existence of an output function with a uniformly well-defined disturbance relative degree, which can pose significant limitations. This note introduces a systematic approach for designing an Immersion and Invariance-based Disturbance Observer (IIDOB) that circumvents these strong assumptions. The proposed IIDOB ensures the disturbance estimation error is globally uniformly ultimately bounded by approximately solving a partial differential equation while compensating for the approximation error. Furthermore, by integrating IIDOB into the framework of control barrier functions, a filter-based safe control design method for control-affine systems with disturbances is established where the filter is used to generate an alternative disturbance estimation signal with a known derivative. Sufficient conditions are established to guarantee the safety of the disturbed systems. Simulation results demonstrate the effectiveness of the proposed method
    • …
    corecore